28^2+22^2=x^2

Simple and best practice solution for 28^2+22^2=x^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 28^2+22^2=x^2 equation:



28^2+22^2=x^2
We move all terms to the left:
28^2+22^2-(x^2)=0
We add all the numbers together, and all the variables
-1x^2+1268=0
a = -1; b = 0; c = +1268;
Δ = b2-4ac
Δ = 02-4·(-1)·1268
Δ = 5072
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5072}=\sqrt{16*317}=\sqrt{16}*\sqrt{317}=4\sqrt{317}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{317}}{2*-1}=\frac{0-4\sqrt{317}}{-2} =-\frac{4\sqrt{317}}{-2} =-\frac{2\sqrt{317}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{317}}{2*-1}=\frac{0+4\sqrt{317}}{-2} =\frac{4\sqrt{317}}{-2} =\frac{2\sqrt{317}}{-1} $

See similar equations:

| 7p-2p+8p-7p=24 | | -151=11-12x | | 3x+6=4x-2x+8 | | 10.3^2x^2=17^2 | | 47=5+7s | | 26=10+d | | A+3b=48 | | 15=-5+c | | 75/27=4n | | 6(p-1.25)=14.64 | | 5(x+4)-3+2-x=10 | | 20=8+j | | 3p^2+3=10p | | 8x–56=24 | | s+4=5s=24 | | (3m-10)7=20-m | | 3a^2+7a-32=0 | | 16*q=80 | | 14y+8y-9y=39 | | X-0.27x=451.14 | | 15/n=4/5/27 | | Y/x=15.9 | | –7c+–9=26 | | 16/6=3d/@ | | t−4=22 | | 8x+4=4+8 | | 2x-x+2=12 | | i−6=11 | | u+12=19 | | 1/2x-3/6=-1 | | 81-3k=‐24 | | 1/5x+9=29 |

Equations solver categories